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Particle Velocity Interpolation in Block-Centered Finite Difference 
Groundwater Flow Models 

DANIEL J. GOODE 
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A block-centered, finite difference model of two-dimensional groundwater flow yields velocity 
values at the midpoints of interfaces between adjacent blocks. Method of characteristics, random walk 
and particle-tracking models of solute transport require velocities at arbitrary particle locations within 
the finite difference grid. Particle path lines and travel times are sensitive to the spatial interpolation 
scheme employed, particularly in heterogeneous aquifers. This paper briefly reviews linear and 
bilinear interpolation of velocity and introduces a new interpolation scheme. Linear interpolation of 
velocity is consistent with the numerical solution of the flow equation and preserves discontinuities in 
velocity caused by abrupt (blocky) changes in transmissivity or hydraulic conductivity. However, 
linear interpolation yields discontinuous and somewhat unrealistic velocities in homogeneous aquifers. 
Bilinear interpolation of velocity yields continuous and realistic velocities in homogeneous and 
smoothly heterogeneous aquifers but does not preserve discontinuities in velocity at abrupt transmis- 
sivity boundaries. The new scheme uses potentiometric head gradients and offers improved accuracy 
for nonuniform flow in heterogeneous aquifers with abrupt changes in transmissivity. The new scheme 
is equivalent to bilinear interpolation in homogeneous media and is equivalent to linear interpolation 
where gradients are uniform. Selecting the best interpolation scheme depends, in part, on the 
conceptualization of aquifer heterogeneity, that is, whether changes in transmissivity occur abruptly 
or smoothly. 

INTRODUCTION 

Finite difference and finite elements solutions of the ad- 
vection-dispersion equation exhibit unrealistic oscillation 
(overshoot and undershoot) and numerical dispersion when 
dispersivity is small [Pinder and Gray, 1977; Grove, 1977]. 
To eliminate these problems, the method of characteristics 
Ms been applied using moving particles to simulate advec- 
tion, whereas finite difference [e.g., Konikow and Brede- 
hoeft, 1978] or finite element [e.g., Neuman and Sotek, 1982] 
approximations simulate dispersion. Random walk models 
[e.g., Prickett et al., 1981] also simulate advection with 
moving particles but simulate dispersion by a particle 
Brownian motion. These particle methods, or any particle- 
tracking scheme, require transport velocities at particle 
locations that do not correspond to locations where velocity 
is known from solution of the flow equation (using finite 
difference or finite element methods). 

The particle position in the x direction and travel time are 
related by 

fxf • = dt (1) 
where Vx is the component of velocity in the x direction 
[LT-•]. The presentation throughout much of this paper is 
for only the x component; expressions for the orthogonal y 
component are analogous. Evaluation of (1) requires the 
particle velocity along its path, whereas the numerical solu- 
•on of the flow problem yields velocity at particular loca- 
tions, such as nodes or midpoints of block interfaces, 
depending on the formulation of the method. For steady 
state flow, velocity at a specific location is constant, but 
velocity is a function of position along a particle's path line. 
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Particle path lines are equivalent to streamlines in steady 
state flow. 

Different interpolation schemes to determine the particle 
velocity may result in significantly different velocities, path 
lines, and travel times [Nicholson et aI., 1987], especially for 
coarse discretization of heterogeneous media. These differ- 
ences may be particularly important when using particle- 
type models of transport to investigate the effects of spatial 
variability of hydraulic conductivity [e.g., Smith and 
Schwartz, 1980; Davis, 1986; EI-Kadi, 1988] or to verify 
analytical stochastic representations of transport in random 
aquifers [e.g., Ababou, 1988]. For the latter the numerical 
model is considered the true representation, and its accuracy 
is critical. The differences among interpolation schemes is a 
function of model discretization; in the limit the velocity 
change between nodes or elements is so small that the 
differences vanish. However, computational limitations, in 
general or for the computer on hand, continue to result in the 
use of relatively coarse grids, especially for three- 
dimensional problems. 

For block-centered, finite difference models of groundwa- 
ter flow, linear interpolation [Vx = f(x)] in the direction of 
the velocity component of interest [Reddell and Sunada, 
1970] is consistent with the assumptions of the flow model; 
however, this method yields a discontinuous velocity field in 
homogeneous media. Bilinear interpolation [Vx = f(x, y)] 
has been used for particle velocities in two-dimensional 
models of solute transport [Garder et al., 1964; Konikow and 
Bredehoeft, 1978; Schwartz and Crowe, 1980; Prickett et al., 
1981]. This method generates a continuous velocity field and 
has been widely applied for simulation of homogeneous 
media. However, this technique does not preserve disconti- 
nuities in velocity present in heterogeneous media when 
interpolation is performed across transmissivity contrasts 
[Goode, 1987]. 

The smoothness expected in the velocity field is related to 
the conceptualization of the variability of aquifer properties. 
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Aquifers are not ideally homogeneous, but velocity fields 
vary smoothly if the hydraulic properties of the aquifer vary 
smoothly. Velocity discontinuities occur at sharp changes in 
hydraulic properties such as a fault or layer boundary. A 
general and realistic interpolation scheme should yield 
smoothly varying velocities where hydraulic properties vary 
smoothly (or not at all) and discontinuous velocities at 
boundaries between different media. 

This paper briefly reviews linear and bilinear interpolation 
and presents a new interpolation scheme for block-centered, 
finite difference, groundwater flow models [e.g., Konikow 
and Bredehoeft, 1978; McDonald and Harbaugh, 1988]. For 
several example problems the new scheme is shown to offer 
improved resolution of smoothly varying flow fields while 
preserving discontinuities at sharp boundaries. The presen- 
tation is for two-dimensional models, but the scheme is 
easily extended to three dimensions. In most cases of field 
scale aquifer simulation, transmissivity is more highly vari- 
able than porosity or saturated thickness, hence this study 
emphasizes velocity interpolation in systems with variable 
transmissivity. 
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Fig. 1. Schematic of particle location and discharge components 
in the x direction in a block-centered finite difference grid. 

SOLUTION OF THE FLOW EQUATION 

The steady state two-dimensional groundwater flow equa- 
tion can be solved using a block-centered finite difference 
representation. In heterogeneous media using constant block 
size the governing equation is approximated by [after Tres- 
con et al., 1976] 

1 {[ (hi+l,d-hid)] • rxx(i + l/2,j) 
Ax Ax 

-- [Txx(i (hi'j- hi-l'J)' 1 -l/2,j) •.5' } 
' {[ (hi,j+l-h,,)] + • Tyy(i,d + 1/2) 

Ay Ay 

[ (hi,j-hi,j-1)]} -- ryy(i,j- 1/2) A y = 0 (2) 
where Tx. x and Tyy are the transmissivities in the x and y 
directions, respectively [L2T-i], h is the potentiometric 
head [L], Ax and Ay are the block widths or node spacings in, 
respectively, the x and y directions [L], and subscripts i and 
j are indices for the column (x) and row (y), respectively, of 
the finite difference grid (Figure 1). The notation i + 1/2 
refers to the location of the block interface between columns 
i and i + 1. If saturated thickness is uniform, or the y 
dimension is vertical (a cross-sectional model), the transmis- 
sivity terms in (2) can be replaced by hydraulic conductivity, 
K [LT-1]. Assumptions implicit in (2) include that there are 
no internal sinks or sources and that the grid is oriented 
along principal axes of the transmissivity tensor. The aquifer 
may be heterogeneous and anisotropic. 

Solution of (2) yields head values at the block centers 
(nodes), and the bracketed terms in (2) are the negative of 
the discharges per unit width across the block boundaries 
(Figure 1). Velocity at the block interfaces can be calculated 
from the discharge at the interface, for example, 

qx(t + 1/2,j) - 1 (hi + l,j- hi,j) 
Vx(i + u2,j) = "eb eb Txx(i + t/2,j) &x (3) 

where qx is the discharge per unit width in the x direction 
[L2T-1], s is the porosity [L3L-3], and b is the saturated 
thickness [L]. The velocity across each block face is deter- 
mined by the head difference between the two adjacent 
nodes only. Porosity and saturated thickness may vary from 
block to block, and it is usually assumed that each is uniform 
within a block [Trescott et al., 1976]. In this case the values 
of e and b used in (3) depend on the block of interest, and V 
changes abruptly at the block interface. 

The transmissivity terms in (2) and (3) represent the block 
interface values between adjacent blocks. This value is a 
function of the two block transmissivities, but the particular 
function chosen depends on the conceptualization of aquifer 
heterogeneity. A widely used function for determining the 
block interface transmissivity is the harmonic mean: 

2Txx(i + 1,j)Txx(ij) 
Txx(i + 1/2,j) = (4) 

Txx(i + 1,j) q- Txx(i,i) 

and similar expressions for the other terms in (2). This 
representation is exact for one-dimensional flow where the 
transmissivity is constant over each block and changes 
abruptly at block interfaces [Bear, 1979]. In natural systems, 
transmissivity may change abruptly at faults because of step 
changes in thickness. For cross-sectional models, hydraulic 
conductivity may change abruptly at layer boundaries. 
Equation (4) automatically yields a transmissivity value of 
zero if one of the blocks is impermeable. 

The horizontal variability of model scale transmissivity in 
natural aquifers is often a smooth process because of gradual 
changes in thickness or lithology. If the specified transmis- 
sivity value is assumed to represent the point value at the 
node at the center of the block, and transmissivity is 
assumed to vary linearly between nodes, the exact block 
interface transmissivity value, for steady state one- 
dimensional flow, is [Appel, 1976] 

Txx(i + •,j) -- Txx(i,j) (5) Txx(i + u2,j) = 

In ( Txx(i + .!'J! I 
X,, Txxti,j) / 
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This value is larger than the harmonic mean but smaller than 
the arithmetic mean. This form cannot be used if the 
transmissivity is uniform or if one of the blocks has a zero 
value of transmissivity, but these cases can easily be handled 
separately. Another block interface value used is the geo- 
metric mean [Haverkamp et al., 1977], which is also the 
effective two-dimensional mean for an area within which 
transmissivity is lognormally distributed [Gutjahr et al., 
1978]. Aquifer heterogeneity at a scale smaller than model 
blocks leads to macrodispersion [Gelhat and Axness, 1983]. 
In this work, however, the block values of transmissivity are 
considered effective block scale values, and the process of 
interest is the effect of large-scale variability, or trend, of 
block transmissivity on particle velocity. All of the numeri- 
cal experiments use the harmonic mean for block interface 
transmissivity (4), except for the last case which uses the 
function of Appel [ 1976]. 

VELOCITY INTERPOLATION SCHEMES 

Explicit linear displacements are typically used for parti- 
cle movement: at a given time the partic!e's velocity is 
evaluated, and then this velocity is considered constant over 
a short time period and is multiplied by the time step size, 
•e!ding a displacement [x • Xo + At Vx(x = x0, t = to)]. 
Changes in velocity during the step (curvature) are not 
•corporated, and particles do not follow streamlines for 
large time steps [Konikow and Bredehoeft, 1978]. Temporal 
integration along the path lines is an additional concern that 
is not addressed here. In this paper, explicit particle dis- 
placements are used, but time steps are sufficiently small so 
that particles essentially follow streamlines. 

Linear Interpolation 

Velocity at an arbitrary location within block (i, fi (Figure 
1) can be computed by linear interpolation in the direction of 
the velocity component [Reddell and Sunada, 1970]: 

V x = (1 - fx) Vx(i- 1/2,j) q- fx Vx(i + 1/2,j) (6) 
where 

fx = (xp - xi- 1/2)/Ax (7) 

An equivalent expression is 

= Vxo + xo) (8) 
where 

a = • Vxo = Vx(t = to) Xo = xp(t = to) (9) 
X e -- X 0 

where x•, is the particle's x coordinate location, x0 is the 
partic!e's location at time t 0, and subscript e refers to the exit 
block face: e = (i - 1/2, j) if Vxo < 0, and e = (i + 1/2, j) ff 
Vxo > 0. Location xe is the location of the exit block face, 
either Xi+l/2 or xi-m. Because the velocity varies linearly 
within a block, the exit boundary can be determined a priori 
from the starting velocity value when the particle enters the 
block. For the case of recharge within the block this scheme 
is consistent with the assumption of recharge distributed 
uniformly over the entire block. Within a block, Vx is a 
•nction ofx only; changes in V x in the y direction occur only 
at block interfaces, and V x is not continuous across the top 

and bottom block faces (the y faces) unless velocity is 
uniform. The expression relating particle position and travel 
time (1) can be integrated directly using (8) because Vx does 
not depend on y: 

- In = tl - to (10) 
ot Vxo 

xl = x0 + {exp [a(tl - to)] - 1} (11) 

These expressions are undefined if Vx is uniform (a -- 0), but 
then the position and time are simply related by X l = x0 + 
Vx(tl - to). This method yields the exact location of the 
particle as it leaves each block with only one time step per 
block. However, smaller time steps must be used to illus- 
trate the curved path line within a block. 

Linear interpolation is consistent with the finite difference 
scheme used to solve the flow equation. The change in 
velocity within the block satisfies the governing flow equa- 
tion: 

where from (3) and (8) 

Oqx aqy 
+ =0 (12) 

• x Oy 

Oqx o(,bVx) 
= = eba (13) 

Ox 3x 

Substituting (9), with x0 and X e corresponding to the two 
faces, into (13), and substituting this expression and the 
analogous expression for the y components into (12) yields 

8bl,yx(i + 1/2,j) - Vx(i- 1/2,j) xi + 1/2 - xi- 1/2 Vy(i,j + 1/2) - Vy(i,j- 1/2!] __ 0 Yi + 1/2 -- Yi- 1/2 

(14) 

This equation is equivalent to the finite difference equation 
(2) used to solve the governing flow equation, and hence the 
governing flow equation is continuously satisfied at all 
locations within the block. This consistency holds for any 
function used to determine block interface transmissivity. 

Linear interpolation yields a discontinuous velocity field. 
The x velocity changes abruptly as a particle crosses a block 
boundary at y(j _+ 1/2) and similarly for Vy at x(i +- 1/2). 

Bilinear Interpolation 

Bilinear interpolation of velocity incorporates linear 
changes in both directions for each velocity component 
[Garder et al., 1964; Konikow and Bredehoeft, 1978]: 

Vx = (1 - Fy)[(1 -fx)Vx(i-re,j-1) q- fxVx(i + 1/2,j-1)] 

where 

+Fy[(1 - fx)VxO - •/2,j) + fxVxti + •/2,/)] (15) 

Fy = . (16) 
' Ay 

for the particle shown in Figure 1. In the case of variable 
porosity or thickness the velocity values from adjacent 
blocks in (15) are determined from fluxes using the porosity 



928 GOODE: VELOCITY INTERPOLATION IN FINITE DIFFERENCE MODELS 

x 

ß known 

O determined 
from eq. 22 

_ 

Equation 20 • Equation19 • 

I I 
Y j-1 Y j-1/2 Y j 

Y Location 

Fig. 2. Schematic of continuous interpolation of head gradient in 
the x direction (Jx --- dh/dx) as a function of y. 

and thickness of the block where the particle of interest is 
located, for example, 

Vx(i + 1/2j- 1) = 
qx(i + 1/2, j- 1) 

(sb)(i,j) (17) 

for the particle in Figure 1 located in block (i, j). This method 
is analogous to a first-order Taylor series expansion in two 
dimensions. The particle position in (!) cannot be evaluated 
analytically for this method because Vx depends on the y 
location. Furthermore, this scheme does not result in a 
velocity field that necessarily satisfies the governing equa- 
tion within each block. In particular, adjustments must be 
made near point sinks and sources [Konikow and Brede- 
hoeft, 1978]. In general, the velocity field is continuous 
across block boundaries. Extensive experience with block- 
centered finite difference models using bilinear interpolation 
(particularly Konikow and Bredehoeft [1978] and Prickett et 
al. [1981]) indicate that it performs satisfactorily and does 
not introduce significant errors or inconsistencies. However, 
most model tests and applications have been for homoge- 
neous media. 

Grad Scheme 

An alternate scheme (designated "grad" for brevity) can 
be developed that yields a continuous velocity field (for 
uniform porosity and thickness) except where transmissivity 
changes abruptly. The grad scheme uses bilinear interpola- 
tion of head gradients for each velocity component. The 
potentiometric head gradient in the direction parallel to a 
transmissivity zone boundary is continuous because head is 
continuous on the boundary. However, in the direction 
normal to the boundary the gradient changes abruptly be- 
cause of conservation of discharge (refraction). A natural 
interpolation scheme, the grad scheme, can be developed 
assuming that head gradient in, for example, the x direction 
varies smoothly as a function of y and is continuous at y 
boundaries, y = y(j -+ 1/2). The effective head gradients at 
the corners of blocks are determined such that interpolated 
fluxes preserve the net discharges of adjacent blocks. Bilin- 
ear interpolation of head gradients could be used to compute 
this comer value [Goode, 1987], but its multiplication with 

the block interface transmissivities does not preserve the 
discharge from the finite difference solution of the flow 
equation. 

At the center of a block face the x component of the 
effective head gradient, Jx • dh/dx [LL-1], is, for example, 

(hi + 1,j- hi,) 
Jx(i + 1/2,j) = Z•X (18) 

Note that physically the head gradient at this point is 
undefined if transmissivity changes at the boundary. How- 
ever, this effective gradient is used because it yields the 
appropriate flux when multiplied by the block interface 
transmissivity. Assuming that the effective head gradient 
varies linearly in both directions within each block, and is 
continuous at block boundaries (Figure 2), the value of 
effective head gradient in the x direction on the block 
boundary at xi+ •/2 is, as a function of y, 

Jx(i + u2)(Y) = 2(1 - Fy) Jx(i + 1/2,j - 1/2) 

+ [1 - 2(1 - Fy)]Jx(i + 1/2,j) (19) 

for Yj-u2 < Y < Yj in block (i, fi and is 

Jx(i + 1/2)(Y) = (1 - 2Fy)Jx(i + 1/2,j- 1) + 2FyJx(i + 1/2,j- 1/2) 
(20) 

for Yj-1 < Y < Yj-u2 in block (i, j - 1). The head gradient at 
the block corner, Jx(i+l/2,i-1/2), is as yet undefined. The 
discharge as a function of y in block (i, j) is (19) times the 
block interface transmissivity, which is constant for the 
block and is not a function of y. To preserve net discharge 
across the block face, the integral of discharge from yj_• to 
yj computed using (19) and (20) is set equal to one-half the 
sum of the discharges across the two block faces (from Yj-m 
to Yj+u2) from the finite difference equation: 
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Fig. 3. Particle path lines for radial flow in a homogeneous aquifer 
(symbols are at equal time intervals). 
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Fig. 4. Capture zone boundary for flow to a well in a uniform, regional flow field (computed velocities at labeled 
locations are shown in Table 1). 

-Txx(i + I/2j) Jx(i + 1/2)(Y) dy - Txx(i + 1/2j- 1) 
- l/2 

fy.j Ay ß yj-,/2 Jx(i + 1/2)(Y) dy = • [qx(i + 1/2,3) + qx(• + 1/2,3 - 1)] 
-I 

(21) 

Substituting (19) and (20) into (21), evaluating the integrals, 
and solving for the comer head gradient at (i + 1/2, j - 1/2) 
yields 

qx(i + 1/2,3) + qx(i + ]/2,3-1) 
Jx(i + 1/2,j- 1/2) - - (22) 

rxx(i + 1/2,/) + rxx(i + 1/2,j-1) 

To compute the velocity at the block comer, this term is 
multiplied by the interface transmissivity for the block 
within which the particle is located and divided by •b for the 
block of interest, yielding 

Vx(i + 1/2,3) q- Vx(i + 1/2,j- 1) 
Vx(i + in,j- 1/2) - rxx(i + 1/2,j) 

rxx(i + 1/2,j) q- Yxx(i + 1/2,j- 1) 

(23) 

for particles in block (i,./). Again, if porosity or thickness are 
variable, the effective velocity from the adjacent block is the 
flux divided by eb for the block of interest (see (17)). 
Although the effective gradient is continuous at the point (i + 
1/2, j- 1/2), the velocity is discontinuous if the block 
interface transmissivities are not equal. Note that (23) re- 
duces to an arithmetic average if transmissivity is uniform. 
For particles in block (i, j-1) the last transmissivity term in 
(23) would be changed to Txx(i+ 1/2,j-l) and the porosity and 
thickness of block (i, j - 1) would be used to determine all 
%. 

A bilinear interpolation scheme within block (i, fi for the x 
velocity of the particle shown in Figure 1 is then 

Vx = 2(1 - Fy)[(! - fx)Vx(i_ 1/2,j- I/2) q- fxVx(i + l/2,j-1/2)] 

+ [1 - 2(1 - Fy)][(1 -L)Vx(i-1/2,3) +fxVx(i + 1/2,j)] 

(24) 

where Vx(i+l/2,j_l/2) is given by (23) and 

V•,(•_ tr2,j) + Vx(i- I/Zj- 1) 
= Txx(i- 1/2,j) Vx(i- 1/z,j- 1/2) Txx(i- 1/2,/) q- rxx(i- 1/2j- 1) 

(25) 

For homogeneous media this scheme is equivalent to bilinear 
interpolation of velocity. If head gradients in the x direction 
are not a function of y, this method is equivalent to linear 
interpolation in homogeneous and heterogenous media. 

NUMERICAL EXPERIMENTS 

The general characteristics of the three interpolation 
schemes described above can be illustrated by numerical 
experiments that incorporate typical features of groundwater 
flow fields. Furthermore, the relative accuracy of each 
scheme can be shown by comparison with analytical solu- 
tions, if available, or with numerical solutions with minimal 

TABLE 1. Velocity at Selected Locations for a Pumped Well in 
Regional Flow 

Velocity, 10 -5 m/s 

Velocity Linear Bilinear 
Location* Component Analytic Interpolation Interpolation 

D Vx -6.19 -6.28 -6.61 
Vy + 2.99 + 3.27 + 2.80 

C Vx -4.49 -4.13 -4.36 
Vy +3.96 +4.79 +3.94 

B Vx -2.02 -3.35 -2.!4 
Vy +3.54 +2.27 +3.49 

A V x -0.25 +0.68 -0.33 
Vy +1.42 +1.14 +1.64 

*Locations shown in Figure 4. 
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discretization error. The following cases are presented: 
radial flow in a homogeneous aquifer, flow to a well in a 
uniform, regional flow field, refractive flow across a low- 
hydraulic-conductivity layer, nonuniform flow across a low- 
hydraulic-conductivity layer, nonuniform flow in a block- 
heterogeneous aquifer, and nonuniform flow in a smoothly 
heterogeneous aquifer. These cases have nonuniform flow or 
variable hydraulic properties or both features together. 
Relatively coarse discretization is used to illustrate the 
differences among the interpolation schemes. For the first 
three cases, analytical solutions are available to evaluate the 
interpolation results. Analytical solutions are not available 
for the last three numerical experiments. To evaluate the 
accuracy of the interpolation schemes for these cases, re- 
suits of each scheme using the coarse grid are compared to 
results using a much finer grid. The fine grid results pre- 
sented use the linear interpolation scheme. Each of the 
interpolation schemes yields essentially the same path lines 
at this level of discretization because the change in velocity 
across each block is small for the fine grid. 

The numerical experiments use the general solute trans- 
port model of Konikow and Bredehoeft [1978] with modifi- 
cations for alternate interpolation schemes and the use of 
Appel's [!976] function for block interface transmissivity for 
the last case. All cases are for steady state flow with uniform 
aquifer thickness and porosity so that only spatial transmis- 
sivity variability is examined, and the underlying assump- 
tions of the model are not altered. In the figures the symbols 
on the path lines represent particle locations at selected 
times with equal time intervals between symbols hence 
closely spaced symbols indicate low velocity. Additional 
particle locations between those shown are indicated by the 
plotted path line. The coarse grid blocks are indicated by the 
griding on each figure or by the major tic marks on the axes. 

Radial Flow in a Homogeneous Aquifer 

The first numerical experiment illustrates the differences 
among the interpolation schemes for a simple problem with 
uniform properties but nonuniform flow. The boundary 
conditions for this case (Figure 3) are fixed flux at the top and 
fight (calculated analytically), no flux along the left and 
bottom, and fixed head in the well block (2, 6). The differ- 
ences between computed velocities for bilinear and linear 
interpolation are greatest at the block boundaries; the inter- 
polated velocities are identical at the block center or node. 
As a particle moves through a block, the differences are 
somewhat offsetting, and the bulk movement of the particles 
is very similar using the two methods, even for this coarse 
discretization. The streamlines should be straight lines into 
the well, as computed using bilinear interpolation. Because 
transmissivity is uniform in this case, the grad scheme is 
identical to bilinear interpolation of velocities. 

Flow to a Well in a Uniform, Regional 
Flow Field 

A similar numerical experiment, but with regional flow, 
shows the ability of the interpolation schemes to track a 
capture zone boundary and predict the location of a stagna- 
tion point. This aquifer is also homogeneous, but path lines 
curve into the well because of the additional component of 
regional flow. In addition, velocities change more rapidly in 
space, particularly near the stagnation point. The location of 
the capture zone boundary, which separates groundwater 
that flows into the well from groundwater that bypasses the 
well, is given by [after Bear, 1979] 

-------= tan y > Yw (26a) 
x - Xw Qw 
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Fig. 6. Particle path lines for nonuniform flow across a low-hydraulic-conductivity layer (low K/high K = 0.01' 
symbols are at equal time intervals' dashed section enlarged in Figure 7). 

Y- Yw [ 2•qr(Y- Yw)] • = - tan ' x - Xw Qw Y < Yw (26b) 
where qr is the regional discharge per unit width in the x 
direction [L2T-1], Qw is the well withdrawal rate [L3T-]], 
and the well is located at (Xw, Yw). The numerical model 
uses fixed heads on all boundaries (calculated analytically) 
and a fixed flux in the well block. The aquifer is simulated by 
eight columns and seven rows of active blocks, although 
only the upper four active rows are shown in Figure 4, as the 
problem is symmetric about y = Yw. The well is centered at 
(3!.5, 31.$), which is in block (5, $). The capture zone 
boundary in the particle-tracking models is identified by two 
adjacent particle path lines, one of which enters the grid 

FINE GRID 

L I NERR 

] 

B C D 

Fig. 7. Enlarged section of grid in Figure 6 showing path lines 
for particles initially released in the low-hydraulic-conductivity 
layer (computed velocities at labeled locations are shown in Table 
2). 

block representing the well while the other bypasses the well 
and leaves the grid on the left boundary. The stagnation 
point is located between these two pathlines at y = Yw. 

Results for the case of a well pumping in a regional flow 
system are similar to the case of radial flow. Bilinear inter- 
polation (that again is equivalent to the grad scheme because 
the aquifer is homogeneous) provides more accurate path 
lines near the well. Away from the well, the two interpola- 
tion schemes yield essentially identical path lines that are 
slightly removed from the analytical solution because of 
discretization errors in the flow solution. Velocities calcu- 

lated at the labeled points in Figure 4 are presented in Table 
1 for linear and bilinear interpolation and for the analytical 
solution. Bilinear interpolation yields more accurate veloci- 
ties, particularly near the stagnation point. For location A, 
linear interpolation yields an x velocity in the wrong direc- 
tion. 

TABLE 2. Velocity at Selected Locations for Nonuniform Flow 
Across a Low-Hydraulic-Conductivity Layer 

Location* 

A B C D 

V x, 10 -6 m/s 
Linear 1.50 1.50 1.49 1.49 
Grad 1.42 1.36 1.31 1.15 

Fine grid 1.42 1.37 1.31 1.17 

Vy, 10 -6 rn/s 
Linear 2.68 2.68 7.11 7.11 
Grad 2.09 4. ! 6 5.63 10.86 
Fine grid 1.86 3.31 5.18 9.07 

*Locations shown in Figure 7. 
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Fig. 8. Head contours for nonuniform flow in a block-heterogeneous aquifer (low K/high K -- 0.1)- fine grid (solid 
curves) and coarse grid (dashed curves). 
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Fig. 9. Particle path lines for nonuniform flow in a block-heterogeneous aquifer (low K/high K = 0.1; symbols shown 
at equal time intervals). 
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Fig. 10. Vx versus y for nonuniform flow in a block-heterogeneous aquifer: (a) at x = 40.5 m and (b) at x = 44.5 m. 

Refractive Flow Across a Low-Hydraulic-Conductivity 
Layer 

Streamlines are refracted at layer boundaries where hy- 
drau!ic conductivity changes abruptly [Bear, 1979]. Figure 5 
illustrates the grid used to simulate transport in a heteroge- 
neous system in which flow crosses a layer having low- 
hydraulic-conductivity. The blocks in the middle row in 
Figure 5 have hydraulic conductivities one tenth of the 
values for the remaining blocks. Fixed heads on all bound- 
•aries are chosen to yield a uniform head gradient in the x 
direction and a uniform head gradient in the y direction 
except at the hydraulic conductivity boundary. Flux in the x 

direction (parallel to the layering) is uniform within each 
layer, and flux in the y direction (normal to the layering) is 
uniform throughout the aquifer. Flow is from the upper left 
to the lower right. 

Linear interpolation yields exact velocities for this exam- 
ple, showing the refraction effect, whereas bilinear interpo- 
lation of velocities smooths the x velocities and distorts the 

path lines (Figure 5). This smoothing occurs in the region 
within 1/2 block width of the boundary on both sides. Path 
lines and velocities become more similar as the distance 
from the discontinuity increases because the error in particle 
position entering or approaching the heterogeneity is com- 
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Fig. 11. Breakthrough of 100 particles for nonuniform flow in a block-heterogeneous aquifer. 

pensated by an equivalent but opposite error when leaving 
the heterogeneity (note the top pathline in Figure 5). How- 
ever, particles originating in the low-hydraulic-conductivity 
layer do not converge to the true path line using bilinear 
interpolation. For this case the head gradients in the x 
direction are not a function of y, and the head gradients in 
the y direction are not a function of x. Therefore the grad 
scheme is equivalent to linear interpolation of velocities and 
also yields, exactly, the refraction effect. 

Nonuniform Flow Across a Low-Hydraulic-Conductivity 
Layer 

Real aquifers are characterized by both nonuniform flow 
and variable hydraulic properties. Linear interpolation 
yields exact path lines for the preceding case because the 
velocity in the x direction is not a function of the y location 
within a block. The x velocity is constant within each block 
and changes abruptly at the boundary between the layers. In 
general, however, head gradients and velocities are not 
constant within each layer but change in response to bound- 
ary condition locations, strengths, and other factors. For 
these situations, velocity in the x direction may be a function 
of the x as well as the y coordinate location within a block. 
This numerical experiment of nonuniform flow across a 
low-hydraulic-conductivity layer has geologic characteris- 
tics similar to the preceding case but has variable velocity 
within each grid block. This case has a middle row of blocks 
in the coarse grid having one-hundredth the hydraulic con- 
ductivity of the remaining rows (Figure 6). As with typical 
cross-sectional models, zkx (horizontal) is larger (10 times) 
than Ay (vertical). Boundary conditions of fixed uniform 
head along the left boundary and withdrawal from the top 
right grid block of the coarse grid result in flow generally 
from left to right. 

Because analytical solutions are not available for this and 
the following two cases, the results of the various interpo- 
lation schemes using a relatively coarse grid are evaluated by 
comparison to results from a much finer grid with z•oc(fine) - 

fix(coarse)/9, and Ay(fine) = Ay(coarse)/9. Thus each block 
of the coarse grid corresponds to 81 blocks in the fine grid. 
This particular scaling (1/9) is used so that the node in the 
center grid block (of the 81) of the fine grid is located exactly 
at the location of a node of the coarse grid and equivalent 
boundary conditions can be imposed. The head solutions are 
different for the coarse grid and the fine grid because of 
different spatial discretizations. Although the linear interpo- 
lation scheme is directly consistent with the finite difference 
flow equation, the coarse grid provides a poorer approxima- 
tion to the correct head field than the fine grid. The most 
accurate interpolation scheme is considered to be the one 
that yields velocities and path lines most closely agreeing 
with the fine grid results. 

Results of the case of nonuniform flow across a low- 

hydraulic-conductivity layer indicate a difference between lin- 
ear interpolation and the grad scheme that is not shown in the 
preceding case (refractive flow). Figure 6 shows particle posi- 
tions for linear interpolation and the grad scheme on the coarse 
grid and the path lines for the fine grid. Results using bilinear 
interpolation of velocities (not shown) suffer from the same 
smoothing errors as previously shown for the refractive flow 
case. Figure 7 is an enlargement of four grid blocks showing the 
path lines of four particles released within the low- 
hydraulic-conductivity layer. The grad scheme more closely 
matches the fine grid results. For this example, Vy within the 
low-conductivity layer is a strong function of x because of the 
discharge location. However, for linear interpolation the 
change in Vy as a function ofx only occurs at block boundaries; 
within a block, Vy is insensitive to x. Within one block, linear 
interpolation yields y velocities too high in the left half and too 
low in the fight half (Table 2). The grad scheme partly incor- 
porates the velocity variability exhibited in the fine grid results 
by allowing the y component of head gradient to vary in x. The 
grad scheme also preserves the discontinuity in Vx at the layer 
boundary by multiplying the interpolated gradient by the block 
interface transmissivity of the block where the particle is 
located (see Figure 7). 



GOODE: VELOCITY INTERPOLATION IN FINITE DIFFERENCE MODELS 935 

COLUMN 
6 1S 24 33 42 S1 60 69 

"' ....... 1"-,', ..... i ........ i •', ' ,", .... i ........ i ........ '1 ........ 't .... ' .... 

Transmissivity, 10 's square meters per second 

% 1 

4' 5 ' ' 4 

........ i ....... , i ..... i,, i,, , .... [ i i i i I i i i [ I I I I i t , , I ...... i ! 

X (meters) 

Fig. 12. Transmissivity contours for fine grid discretization of a smoothly heterogeneous aquifer. 

Nonuniform Flow in a Block-Heterogeneous 
Aquifer 

In addition to vertically layered systems, areal disconti- 
nuities in hydraulic properties may occur. Aquifer properties 
are often conceptualized as varying in a blocky fashion, 
perhaps because most available finite difference models 
assume that properties are uniform within a block. This 
numerical experiment shows interpolation scheme perfor- 
mance for systems having hydraulic discontinuities in both 

directions, as opposed to layered systems. The lower right 
quadrant (36 < x < 72 m; 18 < y < 36 m) of the aquifer 
shown in Figure 8 has a transmissivity 10 times higher than 
the remainder of the aquifer. Boundary conditions of fixed 
uniform flux into the aquifer on the left and fixed heads on 
the right yield the steady state heads shown in Figure 8 for 
the coarse grid and the fine grid. None of the interpolation 
schemes can completely account for the fact that the head 
solution using the coarse grid is not equivalent to the 
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Fig. 13. Head contours for nonuniform flow in a smoothly heterogeneous aquifer: fine grid (solid curves) and coarse 

grid (dashed curves). 
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Fig. 14. Fine grid head contours (solid curves) for nonuniform flow in a smoothly heterogeneous aquifer compared to 
coarse grid solution using harmonic mean block interface transmissivity (dashed curves). 
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Fig. 15. Particle path lines for nonuniform flow in a smoothly heterogeneous aquifer (symbols are at equal time 
intervals). 
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x = 44.5 m. 

solution obtained using the fine grid. The net discharges 
through the entire aquifer are identical because of the 
imposed boundary conditions. The y component of transmis- 
sivity is specified as zero in the first active column so that at 
x = 9 rn V x is uniform and Vy is essentially zero. 

Results for the case of a block-heterogeneous aquifer 
using linear interpolation and the grad scheme are very 
similar for all path lines (Figure 9), but the path lines of the 
grad scheme appear more realistic near the transmissivity 
discontinuity. On most path lines the grad scheme yields a 
slightly better match than does linear interpolation for par- 
ticle position at a given time (shown by symbols). Figure 10 

shows Vx as a function of y for 9 < y < 27 m: Figure 10a is 
for a vertical line at x = 40.5 m, Figure 10b is for a vertical 
line at x = 44.5 m. The lines extend from the y location of the 
boundary between rows 2 and 3 (y = 9 m) down to the 
boundary between rows 4 and 5 (y = 27 m). The velocity 
values shown for the fine grid are at the nodes of the fine grid 
and are identical for each of the interpolation schemes. As 
shown, the bilinear scheme smooths the abrupt change in V x 
at the block boundary. For linear interpolation, Vx is con- 
stant over y within each block and changes abruptly at the 
block boundary. With the fine grid, however, Vx in the high 
transmissivity area increases toward the transmissivity 
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Fig. 17. Breakthrough of 100 particles for nonuniform flow in a smoothly heterogeneous aquifer. 

boundary and in the low transmissivity area it decreases 
toward the boundary. At these locations the x direction 
gradient is higher in the low-transmissivity area and lower in 
the high-transmissivity area. By approximating the smooth 
variation in head gradient between the nodes of the coarse 
grid the grad scheme is able to partly account for this effect. 
All three of the interpolation schemes yield less variability in 
velocity than the fine grid solution. 

A plot of breakthrough at the right boundary of 100 
particles released in a vertical line at the left boundary also 
shows a reduction in travel time variability using the coarse 
grid solutions (Figure 11). All of the coarse grid schemes 
underestimate this variability and the spreading of the par- 
ticles compared to the fine grid solution; the bilinear scheme 
is the poorest. 

Nonuniform Flow in a Smoothly Heterogeneous 
Aquifer 

Natural hydrogeologic systems may be conceptualized as 
having' smooth rather than abrupt variability in hydraulic 
properties. If transmissivity is assumed to vary linearly 
between nodes of the finite-difference grid, then Appel's 
[1976] function (5) may be used for block interface transmis- 
sivity instead of the harmonic mean. Figure 12 shows the 
transmissivity field for this case, which is identical to the 
preceding case except for the smooth variability in transmis- 
sivity. For the coarse grid the block interface transmissivity 
at the discontinuity using the harmonic mean is 46% of the 
value using Appel's [1976] function. For comparison, the 
fine grid simulation explicitly incorporates the trend (see 
Figure 12) for the blocks located between the coarse grid 
nodes and uses Appel's function. At this scale the harmonic 
mean block interface transmissivity is at least 92% of Ap- 
pel's function. Boundary conditions for this case are identi- 
cal to the preceding case. 

The coarse and fine grid heads for the case of smooth 
transmissivity (Figure 13) agree more closely than those in 
Figure 8 for the case of abrupt changes in transmissivity. The 
heads computed on the coarse grid using the harmonic mean 
transmissivity are a poor approximation to the results of the 
fine grid with smoothly varying transmissivity (Figure 14). 
The harmonic mean should not be used for block interface 

transmissivity if transmissivity is assumed to vary smoothly. 
In contrast to the preceding case the smooth path lines 

generated using bilinear interpolation more closely match 
the fine grid results using a smooth transmissivity field than 
path lines using linear interpolation (Figure 15). The grad 
scheme (not shown) yields results similar to linear interpo- 
lation. Because the transmissivity changes smoothly, the 
linear and grad schemes do not represent the changes in 
velocity in the orthogonal direction accurately (Figure 16). 
For particle breakthroughs, bilinear interpolation best 
matches the fine grid results except for the slowest 10% of 
the particles (Figure 17). In contrast to the preceding exam- 
ple, the coarse grid results yield the first particles arriving 
before the first particles in the fine grid simulation. 

DISCUSSION 

Linear interpolation of velocities is directly consistent 
with the block-centered finite difference solution of the flow 
equation, and it is computationally attractive for particle 
tracking because in its integral form it is insensitive to time 
step size [Pollock, 1988]. However, this advantage is less 
significant if the curved path line within blocks is to be 
illustrated or if the particles are part of a general solute 
transport model with other time-stepping constraints, includ- 
ing transient flow. Linear interpolation produces a discon- 
tinuous velocity field, even for homogeneous media. Of 
course, the magnitude of this discontinuity depends on the 
discretization scale and may be acceptable for fine grids. 
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If transmissivity is considered uniform within each block, 
the grad scheme developed here is an improvement over 
linear interpolation for particle velocities. The grad scheme 
yields path lines that are similar to those from linear inter- 
polation, but it more accurately accounts for velocity vari- 
ability within blocks. Bilinear interpolation of velocity 
smooths the discontinuities in velocity that are consistent 
with the conceptualization of abrupt changes in hydraulic 
pAperties. When using bilinear interpolation to quantify 
dispersion in a block-heterogeneous aquifer [Davis, 1986; 
EI-Kadi, 1988], dispersion is underestimated because veloc- 
ity variability of the particles is less than the variability of the 
block interface velocity in the finite difference flow model. 
Furthermore, a coarse grid representation of the flow solu- 
tion itself exhibits less velocity variability than the true 
system for the imposed heterogeneity. In recent numerical 
simulations of a two-dimensional block-heterogeneous aqui- 
fer, each transmissivity block had to be discretized by more 
than one finite difference grid block in order to reproduce 
global velocity variance (A.M. Shapiro, personal communi- 
cation, 1988). 

If transmissivity varies smoothly in space, AppeI's [1976] 
function is more appropriate for determining block interface 
transmissivity and bilinear interpolation of velocity yields 
realistic path lines. For a given discretization, bilinear inter- 
polation yields path lines more similar to finer grid results 
than linear interpolation, despite the fact that linear interpo- 
lation is directly consistent with the underlying numerical 
solution of the flow equation on the coarse grid. 

Use of a finer grid in a heterogeneous system will yield a 
more accurate definition of the flow field near hydraulic 
conductivity and transmissivity contrasts and hence result in 
more accurate particle path lines. A finer grid will also 
minimize the model's sensitivity to the function used for 
determining block interface transmissivity and to the veloc- 
ity interpolation scheme used. Simulations of nonuniform 
flow in heterogeneous aquifers using relatively coarse grids 
are most sensitive to these factors, and selection of the best 
methods requires care. In practical application the differ- 
ences among these interpolation schemes may be minor 
compared to the errors in simulations induced by highly 
uncertain aquifer properties and boundary conditions. None- 
theless, for any given grid and problem definition it is 
desirable to use the most accurate interpolation scheme. For 
each time step, bilinear interpolation and the grad scheme 
require increased computation (two additional multiplica- 
tions for each velocity component) compared to linear 
interpolation using explicit displacements. For many prob- 
lems this increase will be small compared to the increase in 
computation for solving the flow problem and tracking more 
particles in a finer finite difference grid. 

CONCLUSIONS 

Selecting the best interpolation scheme to determine par- 
ticle velocity in a groundwater flow model depends in part on 
the conceptualization of aquifer heterogeneity. Despite its 
inconsistency with the block-centered finite difference flow 
solution, the grad scheme developed here is more accurate 
than linear interpolation for particle velocities in block- 
heterogeneous systems. In the examples presented the in- 
consistency of the grad scheme on the block scale does not 
appear to introduce global error or divergence. If transmis- 

sivity is assumed to vary smoothly, bilinear interpolation 
offers improved accuracy over both linear interpolation and 
the grad scheme. The additional computation of the grad 
scheme and bilinear interpolation (over that of linear inter- 
polation) may be minor compared to increases from using a 
finer grid. Of course, a finer grid will always yield a more 
accurate definition of the flow field, particularly near discon- 
tinuities in hydraulic properties. 
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